
ARIC Manuscript Proposal #4001 
 
 

PC Reviewed:  3/8/22  Status: _____   Priority: 2 
SC Reviewed: _________  Status: _____   Priority: ____ 
 
 
1.a. Full Title: Association of gaseous ambient air pollution with brain MRI outcomes in 
the ARIC cohort  
 
 
   b. Abbreviated Title (Length 28 characters): Air Pollution and MRI outcomes   
 
2. Writing Group: Katie M. Lynch, Erin Bennett, Eun Sug Park, Melinda C. Power, 
James Stewart, Richard Smith, Eric A. Whitsel, Xiaohui Xu, Jeffrey Yanosky, Qi Ying 
 
I, the first author, confirm that all the coauthors have given their approval for this 
manuscript proposal.  _[KL] 
 
 
 First author:   Katie M. Lynch 
 Address:  950 New Hampshire Ave NW 
    Washington DC 20052 
 Phone:    202 994 7778  
        E-mail:    kmlynch@gwu.edu 
 
 
ARIC author to be contacted if there are questions about the manuscript and the first 
author does not respond or cannot be located (this must be an ARIC investigator). 
        Name:   Melinda C. Power 
        Address:  950 New Hampshire Ave NW 
    Washington DC 20052 
 Phone:    202 994 7778  
        E-mail:    power@gwu.edu 
 
 
 
3. Timeline: 
 
The brain MRI and neurocognitive testing data at visit 5 and ARIC variables are now 
available. We plan to complete the work within 1 year of generating final air pollution 
exposure data.  
 

 
4. Rationale:  
  



 There is growing evidence linking air pollution to late-life cognitive health. 
Currently, the strongest evidence supports an effect of particulate matter air pollution;1 
however, gaseous pollutants deserve further attention, as they may impact brain health 
through a variety of mechanisms.   
  
 First, exposure to ozone (O3) or nitrogen dioxide (NO2) may induce processes 
related to inflammation and oxidative stress that impact brain health and lead to cognitive 
impairment.  Ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) have been 
linked to oxidative stress responses and systemic inflammation in a limited number of 
animal studies2-8 (although results are not universal, e.g., one study did not find evidence 
of lipid peroxidation from O3 exposure in rats9).  Oxidative stress, in turn, can promote 
neuroinflammation and lipid and protein peroxidation which can damage cells, and can 
lead to the production of toxic compounds that can result in neuronal apoptosis.10  
Similarly, systemic inflammation could also contribute to neuroinflammatory processes 
because proinflammatory cytokines can cross the blood-brain barrier.11 Studies of rodents 
have specifically found exposure to O3 leads to brain inflammation and oxidative stress in 
several areas of the brain, including the hippocampus, cerebral cortex and substantia 
nigra. 12-19 Some of these studies also found signs of damage to cells in parts of the brain, 
including increased apoptosis,15, 16, 18 and damage to mitochondria,17 after exposure to O3. 
Similar results have been obtained after controlled exposure to NO2. For example, a study 
of NO2 exposure in rats that found signs of oxidative stress also found neuronal 
apoptosis.7  Supporting potential for translation from animal to human studies, systemic 
inflammation has also been found to be associated with cognitive deficits and increased 
white matter disease in epidemiologic studies.20, 21   
 
 Second, gaseous air pollutants have been shown to affect brain amyloid levels – a 
hallmark of Alzheimer’s disease - in animal studies. Studies of rodents have found effects 
of O3 exposure on β amyloid processes in the brain, including increased accumulation,22-

24 which is also seen in Alzheimer’s disease in humans.25 Additionally, a study of mice 
exposed to NO2 found increased neuropathological processes such as aggravated amyloid 
β42 accumulation; these mice also exhibited cognitive effects found in Alzheimer’s 
disease such as decline in spatial learning and memory.26  The impact of gaseous air 
pollutants on Alzheimer’s disease-related pathology in rodents appears to be related to 
the potential for these pollutants to produce inflammation and oxidative stress, as 
discussed above.  The authors determined that the processes underlying the impact of 
NO2 exposure on amyloid β42 accumulation and cognitive deficits likely involved Cox-2 
mediated arachidonic acid (AA) metabolism including AA-derived prostaglandin E2, a 
prostaglandin that has been implicated in β-amyloid formation and can promote 
neuroinflammation.26   
 
 Third, some studies suggest that exposure to certain gaseous pollutants may also 
promote atherosclerosis development. For example, studies have found that a 10-ppb 
increase in NO2 contributes to 33.6 mm2 increase in total plaque area, and that NO2 was 
associated with coronary artery calcium severity.27, 28 Atherosclerosis can contribute to 
thromboembolic events and ischemic strokes, which can harm neurons through lack of 



blood and oxygen, and inflammatory processes, leading to neuronal loss,29 and which are 
commonly part of the pathophysiological process underlying vascular dementia.30  
 
 Although potential pathophysiological connections to brain health exist, relatively 
few studies have considered the impact of NO2/NOx or O3 on late-life cognitive health.  
While some study results have shown significantly decreased cognitive global and/or 
domain-specific scores (e.g. memory, executive function) with increased exposure to 
NO2 or NOX,31-34 other results have not been significant or even showed increased 
scores.31, 35-38 Of the limited studies of NO2/NOX and cognitive change, one study found a 
statistically significant decrease in cognitive scores with increased exposure to NO2 for 
one of their two cohorts,31 but results for the other cohort and from other studies were 
null.31, 39, 40 Studies on NO2/NOX and dementia outcomes found a mix of positive, 
negative and null associations.40, 41 Data linking O3 to cognition is even more limited.  
For O3, a couple of studies found increased exposure to O3 was associated with both 
significantly increased and decreased cognitive test scores, as well as non-significant 
results.34, 37  
 
 While carbon monoxide (CO) poisoning is known to cause central nervous system 
effects, including headaches, dizziness, cognitive effects, and even comas, less is known 
about the effects of ambient levels of CO exposure on cognitive health or dementia risk.  
42 One study found increased exposure to CO was associated with decreased global 
cognition, attention and executive function scores.37 Two other studies found mixed, but 
sometimes significant results for the association between vascular dementia risk and 
increased exposure to CO.43, 44  In limited studies that considered the effects of SO2 on 
cognition/dementia, SO2 was associated with decreased global cognition and memory 
function,37 but was not associated with the risk of vascular dementia.43 Overall, the 
research linking gaseous pollutants to late-late cognitive health is limited, and study 
results are mixed.  
 

MRI biomarkers provide a window into pathogenic change. The argument that air 
pollution is causally related to cognitive change would be strengthened by evidence 
linking air pollution to pathogenic change associated with dementia and visible on MRI. 
Currently there is very little research on whether gaseous air pollutants are associated 
with brain changes visible on MRI. One such study in the 1000Brains Cohort considered 
the effects of both NO2 and NOx exposure on local gyrification indices (markers of local 
brain atrophy) from brain MRIs found an association with lower right posterior cingulate 
cortex and precuneus indices for both pollutants.38  Related analyses in the UK Biobank 
found no statistically significant associations between NO2 or NOx and region of interest 
brain volumes, with the exception of marginally significant association between NO2 and 
decreased thickness in the Alzheimer’s disease (AD) signature brain areas (p=0.05).36  
However, analyses leveraging the Northern Manhattan Study (NOMAS) cohort found no 
significant associations between NO2, NOx or O3 and measures of brain volume, or 
presence of subclinical brain infarcts.45 We are not aware of any studies that have looked 
at the association between CO and MRI biomarkers. As the results of these MRI studies 
are mixed, and only limited types of gaseous pollutants were included, further research is 
clearly needed. 
 



 For this reason, we aim to build up prior work in the ARIC study by Power et al, 
2018,46 which analyzed associations between PM2.5 and PM10 exposures and several MRI 
markers of neurodegeneration and cerebrovascular disease measured at Visit 5. We 
propose to use a similar process to analyze associations of the MRI findings with the 
gaseous pollutants NO2/NOx, SO2, O3 and CO. 
 
5. Main Hypothesis/Study Questions: 
 
Hypothesis 1:  Higher long-term exposure to specific gaseous air pollutants--NO2/NOx, 
SO2, O3, and CO-- will be associated with smaller total and regional brain volumes. 
 
Hypothesis 2:  Higher long-term exposure to specific gaseous air pollutants--NO2/NOx, 
SO2, O3, and CO-- will be associated with greater burden of markers of cerebrovascular 
disease:  infarcts, microbleeds, lacunes, and white matter hyperintensities. 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other 
variables of interest with specific reference to the time of their collection, summary 
of data analysis, and any anticipated methodologic limitations or challenges if 
present).  
 
Exclusions:  
 

We will exclude persons in small race-center categories including not white in 
Washington County or Minnesota; not Black in Jackson; not white or Black in North 
Carolina; presence of tumor, surgery, or radiation to the head; missing primary 
covariates; missing air pollution data; having no valid MRI data. 
 
Independent variables:   
 

We will use an ensemble/observation data-fusing approach to generate monthly 
NO2/NOx, SO2, O3, CO component concentrations at each participant’s residential 
address from 1990-2012. The approach includes generating exposure estimates from  
the Community Multiscale Air Quality (CMAQ) model (a chemical transport model) 
using two different emission inventories, the U.S. EPA’s National Emission inventory 
and the European Union’s Emission Database for Global Atmospheric Research 
(EDGAR) emissions inventory. The resulting estimates are combined through calculation 
of a weighted average and adjusting the resulting concentrations with an observation data 
fusing technique. 
 For the ARIC dataset, the estimates will be linked with geocoded addresses from 
1990-2012 to produce residential-level exposure estimates. We will initially focus on 
estimates within the ten years prior to Visit 5 (2001-2010), but may also consider 
alternate lag periods. In sensitivity analyses we may also consider alternate exposure 
estimates created using other modelling or estimation approaches (i.e., inverse distance 
weighting, nearest neighbor, and models that use log-normal ordinary and log-normal 
measurement error kriging47, universal kriging with land-use regression and partial least 



squares regression,48, 49 and a chemical-transport model based approach with satellite and 
ground observations.50, 51) to understand the impact of model choice on effect estimates.  
 
 
Dependent variables:  
 
MRI data at Visit 5: 

• Microhemorrhages  
• White matter hyperintensities  
• Cortical infarcts  
• Lacunar infarcts  
• Brain volumes (total, hippocampal, Alzheimer’s disease (AD) signature region52, 

lobar, white matter hyperintensity) 
• Diffusion tensor imaging measures, including mean diffusivity, fractional 

anisotrophy 
 
 
Covariates:  
 

All analyses will be adjusted for a set of variables, determined a priori: age, race, 
gender, education level, smoking status, intracranial volume, and measures of 
cumulative, area-level SES.  We will use penalized splines to assess the functional form 
of the continuous variables. In sensitivity analyses, we may consider adjustment for 
additional covariates (e.g., rural vs. urban residence, additional measures of health, 
APOE e4). We will also explore whether there is confounding by PM2.5 or other co-pollutants, 
using two-pollutant models. 

 
Effect modifiers:  
 
We will consider study site as an effect modifier because of the possibility that variables 
related to location, such as variation in pollutants by site, could impact the effect of air 
pollution on MRI outcomes. We will also use two-pollutant models to explore whether 
there is effect modification by PM2.5 or other co-pollutants. 
 
Statistical Analyses:   
 
 Due to possibility of variation in pollutants by site, site-specific analyses will be 
performed and then meta-analyzed using a random-effects model to produce entire cohort 
effect. We will evaluate heterogeneity of effect using the I2 test. If no heterogeneity 
across sites is found, we will perform the analysis with the entire ARIC population as a 
single sample. 
 To analyze the associations between NO2/NOx, SO2, O3, CO and continuous MRI 
markers (white matter hyperintensities, volumes) we will use linear regression. For 
dichotomous markers (cortical infarcts, lacunes, and microbleeds) we will use logistic 
regression. We will also explore multivariate regression due to concerns about power. 



Data on white matter hyperintensities may be log-transformed prior to use as an 
outcome in our models because previous analyses found this variable was highly skewed; 
additional transformations may be considered. To account for the Visit 5 Stage 3 MRI 
sampling strategy and refusals, coordinating-center derived weights will be used in the 
analyses. We will treat exposure as a linear term or categories of exposure depending on 
the shape of the dose-response curve as evaluated by penalized splines. As mentioned 
above, we will include covariates in the analysis as potential confounders and may 
consider additional potential confounders in the sensitivity analyses. In additional 
sensitivity analyses, we will account for attrition using inverse probability weights (IPW), 
and may compute limits of the association using different assumptions about attrition to 
address selection issues.  
 
Limitations/Challenges:   
  

Our analysis has several limitations. First, the analysis looks at outcomes from 
one time period, Visit 5, and does not look at within-individual change in MRI 
functioning or cognition. Additionally, despite adjustment for a priori-specified 
confounders and sensitivity analyses considering additional confounders, the potential for 
bias from confounding remains. Further, the possibility of selection bias exists, although 
we will attempt to address any concerns in sensitivity analyses. While some 
misclassification of air pollution exposure and MRI outcomes is expected, we expect 
misclassification to be non-differential and for resulting bias to be towards the null.  We 
are also limited by a relatively small sample size for the MRI outcomes; however, this is 
one of the larger community-dwelling MRI samples currently available.  
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